
137

Paul Ramshaw

Mantautas Krukauskas

Similarities of a Musical Text and Computer Program Source Code:
New Music Metrics Possibilities

In the current reality of interdisciplinary development in the field of sciences, humanities and
the arts, a new possibilities and approaches arise to discover new ideas and research methodologies.

It’s always useful to compare experience and perspectives of different fields, which connect
to the same basic principles of creativity. At the very beginning I would like to draw some parallels
between the process of music creation and the process of computer software development.

On the very abstract level, we might divide the process of music creation to three general
phases:

• Idea of composer is set up;
• Idea is “encoded” into musical text;
• Performer interprets musical text.
Idea of a composer is more or less formal. It might be described as a creative inspiration or

expressed as a draft of concept. Finally, it is “encoded”, set out with the help of an accustomed
notation system. This part of the process includes an important amount of creativity itself, however,
the final result – a musical score – is a formal and particular expression of initial idea. It becomes
a code for a performer to interpret it and make the idea of composer live. Musical text acts as a
medium in this sense.

In the process of software development (creation of a computer program), we can also
abstract three similar phases:

• Definition of idea of computer program – algorithm;
• Idea is encoded into source code;
• Source code is being interpreted in a computer with operating system.
Algorithm is an abstract description of a task (or set of tasks) of a computer program. It can

be easily compared with the initial idea of composer. In general, algorithm is a program itself,
however expressed on a very high level of abstraction. The programming process implements the
algorithm by realising it with the help of particular computer programming language. When
programming is completed, source code needs to be interpreted in an operating system (i. e.,
Windows, Linux, MacOS etc.). Program becomes functioning, when it’s being interpreted in a
particular computer with a particular operating system.

When computer program is being created, a problem is analysed and defined in order to
create an algorithm. The initial definition of a musical composition also has quite similar element.
In example, composer usually starts from selecting instruments he will use in his work. Instruments
can be defined by composer himself or projected in the requirements of a commission for a
musical piece. In other instances, inspiration of other art form (Liszt’s Preludes), events observed
(Messiaen’s Catalogue d’Oiseaux) etc. might serve as a problem or general idea of composition.
Script or libretto for a stage work would also serve as a good example. Composer might also set up
other predefined elements to have a framework for his creation.

Algorithm of a musical composition might be described as a general concept of the piece,
predefining structure, form and/or many other possible aspects. In some cases it might be even
drafted as a scheme.

Implementation of algorithm in both composing and computer program creation basically
resolves abstract concepts into particular language. Creativity is very important for this process,
especially in composing. Programming also involves creative elements, however it is more neutral
and impersonal, as it basically determines smooth functionality of a computer program. In music
composing the process of a formalisation of an idea involves dense usage of creative approaches,
such as particular composing techniques, hardly cognisable intellective manifestations of creative
mind etc. It is where music is actually born. However, in both cases the result is a text, where are
all thoughts and ideas (from abstract to very specific levels) are laid out.

138

PRINCIPLES OF MUSIC COMPOSING: Musical Text / MUZIKOS KOMPONAVIMO PRINCIPAI: muzikos tekstas

Process: Software Process: Music
A problem to be solved, analysis and
specifications

Definition of composition (i.e., requirements of a
commission)

Algorithm Pre-definition of structure, form, other elements
Implementation (programming) Implementation (writing musical text)
Parsing/interpreting Performing
Testing Rehearsing with both composer and performer(s)
… etc. … etc.

It is interesting to note, that in computer program creation different persons or groups of
persons usually perform all the different parts of the process, by using a “split and rule” policy. In
musical composition usually single person is responsible for at least first three steps. However, we
might have examples, where one person generates the concept of a computer program and implements
it. We also might actually find many cases in the sphere of creative industries, where different
persons are responsible for definition, structuring and implementation of musical composition.

The next steps of the process described are connected with decoding of a text (parsing/
interpreting or performing), herewith also with issues of cognition, perception etc. We could also
find more interesting parallels there. In example, software functionality testing could be compared
to rehearsals of a piece with composer and performer(s) together, when afterwards piece is modified
according to the results of the rehearsal. However, I will not focus on these developments, as it is
not the main focus of this research currently. The key elements of a text (both source code and
musical text) that are important for us in this case are:

• It’s a static form of a dynamic idea;
• It’s accessible and convenient for analysis;
• It is notated according to the particular, known rules.
To continue this comparison, it is worth noting, that during past 50 years the development of

technologies and computers had a strong impact on a process of composition itself. The first steps,
role of algorithm and structure definition sometimes are made with the computer assistance. One
of the first computer-aided compositions based on this principle was Illiac Suite for String Quartet
by Lejaren Hiller composer already in 1957. This work used serialism and counterpoint rule sets,
which were programmed with Illiac, University of Illinois supercomputer. Machine-generated material
was performed by string quartet afterwards. It was the origin of a so-called algorithmic composition
type, which is still developing now. The main techniques of algorithmic composition include:

• Generation of musical material based on various mathematical algorithms;
• Modification of material;
• Selection of material according to the set of rules.
We can easily notice, that such principles are also common for usual process of creation of a

musical composition.
It is further necessary to briefly discuss the issue of the level of abstraction, which is very

important both for musical composition and for computer programming.

Composing Programming Level of
abstraction

Composing /
programming skills

Structure, form, principle Algorithm High Low
Operating with structural
elements

Object-programming Medium (High) Medium

Writing of musical text Lower-level
programming

Medium (Low) High

From the table provided we could clearly see the parallels of abstraction in composing and

programming. Structure, form, principle and algorithm are representations of high level of abstraction.
However, particular composing or programming skills needed to define them is low. It means, that
basically even a person with minor musical knowledge could devise an abstract form of a composition.
Operating with particular structural elements in music (it can be also compared to object programming)
requires better knowledge and skills. Writing musical text or source code is less abstract and high-
level composing or programming skills are needed.

139

Mantautas Krukauskas

This short comparison of musical text and source code enables us to be certain, that both
have conceptual similarities. Therefore musical text can also be interpreted and analysed as a set
of logical functions. The same musical text can be expressed with functions of different levels of
abstraction, like structure and form (high abstraction), common elements of a musical text – notes,
signs, symbols etc. (medium abstraction), performance data (low abstraction) and so on. One of
the musical file formats, which are able to express different levels of abstraction by nesting
musical concepts in a logical hierarchy, is MusicXML. This format is under development from year
2000 and is often used as a medium-format between popular musical composition and score-
writing environments.

Maurice H. Halstead designed one of the main techniques of analysis of source code, based
on logical-semantic analysis and developed it into Software Science. On the basis of similarities of
musical text and source code, some of these techniques can be adopted to analyse musical texts.

Source code is analysed by grouping it into functions (operators) and variables (operands).
4 basic metrics are concluded:

• 1 – number of distinct operators;
• 2 – number of distinct operands;
• N1 – total number of operators used;
• N2 – total number of operands used.

After counting these attributes, more complex measures derive, some of which might be also
used in analysis of a musical text. In example:

Author of this article conducted a series of experiments, where usage of such metrics was tested
with MusicXML format. In Picture 1 screen of a prototype computer program is displayed, where
fundamental elements of Halstead metrics are calculated from a musical score in MusicXML
format. Already now it is possible to confirm validity of the results, and further development of
this research is being done at the moment.

Such analysis might add to the development of impartial metrics for a musical text. To
conclude, let’s remember famous sentence of Sir William Thomson Kelvin: “I often say that when
you can measure what you are speaking about, and express it in numbers, you know something
about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge
is of a meagre and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely
in your thoughts advanced to the state of Science, whatever the matter may be.”

References
1. Manning, P. Electronic and Computer Music. Oxford, Oxford University Press, 2004.
2. http://www.recordare.com/xml.html.
3. Halstead, M. H. Elements of Software Science. New York, Elsevier, 1977.
4. Thomson Kelvin, William. Popular Lectures and Addresses, Volume 1. London, Macmillan & Co., 1889.

Program (musical text) vocabulary η:
η = η1 + η2;
Program vocabulary = distinct operators + distinct operands;

Program (musical text) length N:
N = N1 + N2;
Program length = total operators + total operands;

Program (musical text) volume V:
V = N log2 η;
Program volume = length x log2 vocabulary;

Program (musical text) difficulty D:
D = (η1 / 2) x (N2 / η2);
Difficulty = (distinct operators / 2) x (total operands / distinct operands).

140

PRINCIPLES OF MUSIC COMPOSING: Musical Text / MUZIKOS KOMPONAVIMO PRINCIPAI: muzikos tekstas
Pi

ct
ur

e
1.

 S
cr

ee
n

of
 a

 p
ro

to
ty

pe
 c

om
pu

te
r

pr
og

ra
m

141

Mantautas Krukauskas

Santrauka

Muzikinio teksto ir kompiuterinës programos pradinio kodo panaðumai:
naujos muzikinës metrikos galimybës

Tiriant kompozitoriaus kûrybà, visada tikslinga remtis autentiðka jos iðraiðka – muzikiniu tekstu.
Muzikinis tekstas taip pat yra kûrinio analizës bazinis elementas.

Muzikinio teksto ir kompiuterinës programos pradinio kodo analogija yra akivaizdi. Tam tikru
sutartu kodu (natomis, þenklais) kompozitoriaus minèiai yra suteikiamas statiðkas pavidalas. Vëliau ði
informacija gràþinama á dinaminá, erdvëje bei laike egzistuojantá bûvá – perduodama atlikëjui-interpre-
tatoriui. Kompiuterinio kodo programuotojas taip pat pagal nustatytas pasirinktos programavimo kal-
bos taisykles iðreiðkia tam tikrà algoritmà, kuris yra interpretuojamas konkreèioje operacinëje sistemo-
je ir paverèiamas realiai funkcionuojanèia programa. Kompozitoriaus màstymas irgi turi daug analogi-
jø su algoritmizavimo principais.

Programavimas, algoritmo kodavimas tam tikroje programavimo kalboje (kompiuterio programø
kodø uþraðymas) ir muzikinë kûryba (jos uþraðymas tam tikru formaliu raðtu) yra panaðios prigimties ir
jiems galioja tie patys formalizavimo bei interpretavimo principai. Geriausias ðio panaðumo árodymas –
2000 m. sukurta MusicXML sistema (www.recordare.com).

Analizuojant muzikiná tekstà, yra siûloma já traktuoti kaip operatoriø ir operandø (funkcijø ir
kintamøjø) eilæ. Tas pats muzikinis tekstas gali bûti iðreikðtas keliais skirtingais funkcijø ir kintamøjø
kompleksais, lygiai taip, kaip tas pats algoritmas gali bûti iðreikðtas skirtingo lygio programavimo
kalbomis. Þemesnio lygio programavimo funkcijos apima konkretesnæ, su procesoriaus komandomis
susijusià sintaksæ, vidutinio lygio – jungia elementarias funkcijas á sudëtinius procesus bei tam tikrà
formà, o objektinio programavimo kalbos, apimanèios ir visas kito lygio kalbø funkcijas, leidþia tiesio-
giai operuoti sudëtingomis funkcijomis ir esminëmis programos struktûros sistemomis (objektais).

Pagal XX a. 8-àjá deðimtmetá amerikieèiø fiziko ir informatiko Maurice H. Halsteado iðplëtotà
metodologijà (Halstead, Maurice H. Elements of software science. ELSEVIER, New York, Oxford,
Amsterdam, 1977), tam tikros matematinës formulës leidþia nustatyti programos kodo sudëtingumà,
þodynà, informaciná turiná bei kitus rodiklius, kurie gali bûti gretinami tiek su kitomis to paties
algoritmo iðraiðkomis skirtingose programavimo kalbose, tiek su kitø programø algoritmais. Ðiø matø
pagrástumas buvo árodytas tiek matematiðkai, tiek empiriðkai.

Šios metodologijos pritaikymas muzikinio teksto analizei suteikia galimybæ nustatyti tam tikrus
objektyvius rodiklius, kuriant muzikinio teksto kiekybinës metrikos sistemà.

